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A viscous linear stability analysis of a trailing line (Batchelor) vortex is presented. 
Employing a staggered Chebyshev spectral collocation technique, very accurate 
results were obtained. The destabilising role of viscous forces has been shown to 
produce two types of viscous instability modes. These viscous disturbances consist 
of an axisymmetric mode and an asymmetric mode. Both disturbances are long-wave 
instabilities with maximum growth rates which are orders of magnitude smaller than 
the inviscid modes which have been found by others. Comparison with experimental 
results and condensation trail observations are found to be in good qualitative 
agreement with the present study. 

1. Introduction 
The hazard associated with the trailing line vortices generated by large commercial 

jetliners and its effect in reducing the flight frequencies at major airports has been 
known for many years. To date no satisfactory solution has evolved. With the 
projected growth in passenger traffic, this limit will result in flight delays and 
prohibit revenue growth. These considerations have brought the task of manipulation 
and control of trailing line vortices into the forefront of active research. 

This study is concerned mainly with a viscous stability analysis of an  isolated 
trailing line vortex. The motivation for undertaking such analysis is twofold. First, 
except for the work of Lessen & Paillet (1974) and Stewartson (1982), there are no 
other viscous stability calculations for trailing line vortices. Since Lessen & Paillet’s 
work was limited to low Reynolds numbers (Re 5 150), which will be shown later to 
be inadequate, questions concerning more realistic flow conditions remain, while the 
asymptotic analysis of Stewartson cannot be applied directly to  disturbances with 
low azimuthal wavenumbers. Secondly, the recent study of Khorrami, Malik & Ash 
(1989) showed substantial quantitative disagreement with the results of Lessen & 
Paillet. I n  a detailed study, Khorrami (1989) showed that the discrepancy was 
caused primarily by the small radius of integration employed by Lessen & Paillet. 

Much effort in the past has been directed toward understanding the stability 
characteristics of a trailing line vortex. Subjecting a Batchelor vortex to  inviscid 
disturbances, Duck & Foster (1980) found a continuous spectrum of unstable modes. 
The spectrum contained infinite numbers of higher modes for each combination of 
axial wavenumber, a, azimuthal wavenumber, n, and swirl parameter, q, where their 

t Present address: High Technology Corporation, 28 Research Drive, Hampton, VA 23666, 
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calculated primary mode corresponded to  the mode obtained by Lessen, Singh & 
Paillet (1974). The findings of Duck & Foster have since been confirmed by many 
other researchers, notably the asymptotic analysis of Leibovich & Stewartson (1983), 
Stewartson & Capell (1985), Stewartson & Brown (1985), Duck (1986), and 
Stewartson & Leibovich (1987). Recently, it was shown by Khorrami et al. (1989) 
that, although the higher modes are inviscid by nature, they persist to much lower 
Reynolds numbers. The extensive inviscid studies of Ito, Suematsu & Hayase (1985), 
Foster & Duck (1982) and Staley & Gall (1984) suggest that this is an inherent 
feature of swirling flows. These inviscid disturbances have large growth rates and 
very short e-folding times as compared to conventional boundary-layer instabilities. 
Although the maximum growth rate increases with n, Leibovich & Stewartson (1983) 
have shown that this maximum asymptotes to a value, wim, as n becomes very large. 
It seems that the large growth rates of the inviscid modes with negative azimuthal 
wavenumbers and their complex structure have drawn the attention of most 
researchers in recent years, a t  the expense of any viscous analysis. The prevailing 
opinion in the stability community has been that the role of viscosity is a stabilising 
one. However, the asymptotic analysis of Maslowe & Stewartson (1982) indicated 
that the role of viscosity in swirling flows is more subtle than thought previously, and 
that it alters the shape of the perturbation eigenfunctions significantly. The 
discovery of two viscous modes of instability in this study confirms their suspicions 
and demonstrates the destabilising influence of viscosity. The viscous disturbances 
reported here are for azimuthal wavenumbers which (for the case of the Batchelor 
vortex) have never been reported to be unstable. These new instabilities are 
presented in detail in $4.2. 

2. Stability formulation 
Cylindrical-polar coordinates ( r ,  8, z )  are chosen as the coordinate system. 

Following Lessen et al. (1974), the far-wake solution for a trailing line vortex due to 
Batchelor (1964) is of the form 

(2.1) 

where U ,  V and W are the radial, tangential and axial velocities, respectively. The 
swirl parameter, q, is related to the ratio of the maximum swirl velocity to the 
maximum axial velocity excess (or defect). The flow variables are decomposed into 
a mean part and an infinitesimally small perturbation, i.e. 

.ii = u+u, v"= v+v, d = w+w, fi = n + p .  (2.2) 

Employing normal mode analysis, the above perturbations are Fourier decomposed 
and assumed to be of the form 

(2.3) {u, w,w,p} = { i F ( r ) ,  G ( T ) , H ( ~ ) , P ( ~ ) } ~ ~ ( = ' + ~ ~ - ~ ~ ) ,  

where F ,  G, H and P are the complex disturbance eigenfunctions, 01 is the axial 
wavenumber, n is the azimuthal wavenumber, being either zero or an integer, and w 
is the frequency. For any temporal solution, 01 is real and w is complex. 

The linearized form of the equations of motion for steady flow of an incompressible 
fluid, in terms of perturbation eigenfunctions, were obtained by Lessen & Paillet 
(1974) and can be written 
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where primes denote differentiation with respect to the radial coordinate. The non- 
dimensionalization is done with respect to the viscous core radius and the centreline 
axial velocity deficit or excess as defined by Lessen et al. (1974), and Re is the 
Reynolds number based on the core radius and velocity excess. 

This set of governing equations must satisfy six boundary conditions. At a large 
distance from the centreline the three components of the velocity are zero. That is 

(2.8) 

At the axis of the vortex, r = 0, the solutions are required to be smooth and single 
valued. The conditions on the centreline are dependent on the value of the azimuthal 
wavenumber n and are given by Batchelor & Gill (1962) as 

F ( w )  = G ( w )  = H ( w )  = 0. 

if n = 0, F ( 0 )  = G(0) = 0, H(O) = 0, (2.9) 
i f n  = fl, F(O)fG(O) = 0, F'(0) = 0, H ( 0 )  = 0, (2.10) 

or if In1 > 1 ,  F ( 0 )  = G(0) = H ( 0 )  = 0. (2.11) 

3. Numerical method 
A staggered Chebyshev spectral collocation method was employed in the numerical 

calculations. The merits of choosing the collocation method and how it is 
implemented are explained a t  some length by Khorrami et a l .  (1989) and Khorrami 
(1991). Consequently, only a brief outline of the technique is presented here. In  this 
method (see Gottlieb & Orszag 1977 and Gottlieb, Hussaini & Orszag 1984), the 
perturbation eigenfunctions are expanded in terms of a truncated Chebyshev series, 
i.e. 

N 

F(6)  = c a k T k ( 8 ,  (3.1) 
k-0 

where 6 is the independent variable in Chebyshev space. Next, the governing 
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equations (2.4)-(2.7) are discretized so that the velocities and the three momentum 
equations are evaluated at the grid points while pressure and the continuity equation 
are enforced at the mid grid points. For this staggered grid, the velocities are 
evaluated a t  the collocation points which are the extrema of the last retained 
Chebyshev polynomial (T’(6)) in the truncated series, while the pressure and the 
continuity equation are evaluated at  the collocation points which are the roots 
of TN(().  The physical domain [0, rmax] is mapped into the Chebyshev space [ - 1,1] 
via an algebraic transformation. The accuracy and convergence of the solution and 
its dependence on the value of rmax, where the far-field boundary conditions are 
imposed, were tested extensively. A detailed study reported by Khorrami et al. 
(1989) showed that rmax = 100 was sufficient and the number of required Chebyshev 
polynomials, N ,  varied between 50 and 70, depending on flow Reynolds number. 

The discretised equations of motion plus the six boundary conditions for velocities 
constitute a generalised eigenvalue system for the complex eigenvalue w. The general 
complex eigenvalue solver employed in the global calculations is the IMSL QZ 
routine called EIGZC. If the eigenfunctions are desired, the eigenvalues are refined 
and the eigenfunctions are obtained subsequently using a local method. The local 
method which was employed here uses an inverse iterative technique (see Wilkinson 
1965). The discretisation of the governing equations for the local method is spectral 
but non-staggered. It was found that the eigenvalues obtained by the local procedure 
always converged to eight or nine significant digits within four iterations. 
Furthermore, it was found that both methods produced eigenvalues which were in 
agreement up to at least six-digit accuracy. 

4. Results and discussion 
The quantity W J W ,  in equation (2.1) represents the uniform outer flow and 

throughout the present study it is assumed that W J W ,  = 1. It has been pointed out 
by Lessen et al. (1974) that the translation or inversion of the axial velocity affects 
the frequency only while the growth rate, wi, remains unchanged. This is correct but 
it should also be noted that inversion of the axial velocity profile causes the sign of 
the unstable azimuthal wavenumber, n, to  change. This feature has physical 
significance, since waves with negative n have different orientation with respect to 
the rotating flow than those with positive values. 

4.1. Inviscid instabilities 
First, as a test case, the variation with axial wavenumber, a, of the growth rate of 
the unstable modes for n = -2 and q = 0.8, a t  a Reynolds number of 10000 were 
computed. The curves were identical to the ones obtained from the inviscid 
calculations of Duck & Foster (1980). It is logical then to assume that the instability 
is an inviscid one. The variation of the real part of the frequency, w,, with a 
associated with these higher modes showed similar trends and were nearly identical 
to the corresponding curve for the primary mode. This strange behaviour, which was 
first shown to exist via the asymptotic analysis of Leibovich & Stewartson (1983), 
seems to be a feature of the inviscid modes. The calculations for the case of n = - 1 
a t  Re = 10000, q = 0.4 showed similar behaviour to that of the n = - 2 mode. Again, 
the results matched exactly with Duck & Foster (1980) while the primary mode 
corresponded to the inviscid mode obtained by Lessen et al. (1974). The variation of 
the first two modes with Reynolds number for the case of n = - 2  at  two distinct 
values of a and q = 0.8 are shown in figures 1 and 2. The inviscid nature of these 
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. Variation of the growth rate of n = -2  disturbances 
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FIGURE 2. Variation of the real part of frequency of n = -2 disturbances with 
Reynolds number (q = 0.8). 

modes is self-evident from these plots. It is clear that for Reynolds numbers as low 
as 10000, these modes have almost attained their maximum growth rates and are 
virtually independent of Re. Although not displayed here, similar behaviour exists 
for the case of n = - 1 and other higher negative azimuthal wavenumbers. 
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FIQURE 4. Variation of the growth rate of axisymmetric (n = 0) disturbances with 
Reynolds number for q = 1.0. 
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4.2. Viscous instabilities 
The two viscous instabilities discovered in this study correspond to an axisymmetric, 
n = 0, mode and an asymmetric, n = 1,  mode. Figure 3 shows the variation of w with 
a for n = 0, q = 1 and Re = 10000. The figure indicates that this instability has a 
growth rate which is orders of magnitude smaller than the inviscid modes. The 
maximum value of wi occurs a t  a M 0.3 which suggests that  the disturbance 
wavelength is on the order of the core radius of the vortex. Overall it is safe to  say 
that this is a long-wave instability. The variation of the real part of the frequency 
with a shows an almost linear behaviour, which indicates that the axial phase speed 
of the wave, c, = wJa,  is constant and nearly equal to unity over a wide range of a. 
This fact suggests that  the disturbance is travelling with the same speed as the 
constant outer velocity field. Variation of w with Reynolds number is presented in 
figures 4 and 5 ,  for two distinct wavenumbers. The viscous nature of the 
axisymmetric mode is shown clearly in figure 4. As the Reynolds number increases, 
the disturbance attains its maximum growth rate very rapidly and then drops 
gradually. The maximum of wi shifts to higher Re as a increases and there is a 
significant drop in its magnitude. Figure 5 shows that the phase speed is constant 
over a wide range of Reynolds numbers and has a magnitude which is slightly less 
than the uniform outer flow. The variation of the wavenumber of the maximum 
growth rate with Reynolds number is shown in figure 6. The curve is consistent with 
the behaviour of a viscous mode and shows the damping effect of viscosity on the 
wavenumber at  moderate Reynolds numbers. The effect of swirl parameter, q,  on the 
growth rate for a = 0.4 is displayed in figure 7. As the Reynolds number increases, 
the range of q where instability exists also increases while the position where wi 
reaches its maximum shifts to lower values of the swirl parameter. It is apparent 
from this figure that the increase in the range of q only takes place with respect to 
lower values of q while all three curves asymptote to q M 1.26 for higher values, where 
the instability disappears. 

Owing to the small growth rate and high Reynolds number associated with these 
viscous modes, care must be taken to ensure that the results are fully converged. The 
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FIGURE 6. Influence of Reynolds number on the variation of the axial wavenumber associated 
with the maximum growth rate of axisymmetric (n = 0) disturbances, when q = 1 .O. 
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FIGURE 7 .  Variation of the growth rate of axisymmetric (n = 0) disturbances with swirl 
parameter for a = 0.4. 

Chebyshev spectral collocation method is well suited to such flows since, with a 
relatively small number of polynomials, very accurate eigenvalues are computed. 
The convergence behaviour of the axisymmetric (n = 0) viscous mode at Re = 10000 
is presented in table 1. The table shows that five- or six-digit accuracy is easily 
obtained. Finally, although the global method employed in this study is not suitable 
to calculate critical values, the interest in this axisymmetric mode justified the effort. 
The critical values are compiled for the different control parameters for this mode in 
table 2. The critical Reynolds number, Re,, given in this table is the lowest Reynolds 
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FIGURE 8. Photographic evidence of the growth of axisymmetric (n = 0) disturbances in the 
upper trail of an aircraft contrail (from Bisgood 1980). 

FIGURE 9. Photographic record of the amplification of axisymmetric (n = 0) waves on 
an aircraft contrail (from Bisgood 1980). 

N W 

36 0.483 592 892 + iO.000 184 796 2 
42 0.483592862+i0.000 1848037 
46 0.483592828+i0.000 1846867 
50 0.483 592 832 + iO.000 184 685 3 

TABLE 1 .  The convergence behaviour of axisymmetric ( 7 ~ .  = 0) viscous mode with the number 
of Chebyshev polynomials, N .  Here, a = 0.5, Re = 10000, and q = 1.0 

01, Re, 4 e  w 

0.468 322.35 1.08 0.441 679-i4.97 x lo-’ 

TABLE 2. Critical values of different parameters for the axisymmetric case n = 0 

number, together with the corresponding q and a for which the instability first 
occurred. 

There is a phenomenon closely resembling the axisymmetric mode just described 
which has been observed in experiments and photographs of many condensation 
trails from commercial aircraft. Although the phenomenon is termed ‘core bulging ’ 
or ‘core bursting’ in the literature, the present author believes that is a misnomer 
since it appears to be travelling outside the core and the core remains intact. It is 
only in the later stages that the growth of these disturbances affect the core 
structure. This fact is demonstrated in the photographs shown in figures 8-10. These 
photographs, which are contrails from a large commercial aircraft, were reproduced 
from the work of Bisgood (1980). They were taken from the ground with the vortices 
a t  heights between 10000 and 12000 m. The separation distance between the vortices 
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FIGURE 10. Further growth and bursting of axisymmetric (n = 0) wave forms 011 

contrails (from Risgood 1980). 

F I G U R E  11. Crow’s classical ‘sinuosities’ mode (from Risgood 1980). 

was between 25 and 40 m. Figure 8 show that while axisymmetric disturbances are 
present (Bisgood has called it the ‘dotting’ effect), the core still remains intact. The 
next two photos (figures 9 and 10) show the amplification and growth of these waves. 
It must be emphasized here that these photographs are not sequential and might not 
even be the same contrails. However, the presence of the inductive instability (Crow 
1970) due to the vortex pair should also be noted in figures 9 and 10. The case of Crow 
instability is mentioned here merely to emphasize that the existence of these two 
forms of instability (core bulging and Crow) does not depend upon the simultaneous 
presence of both and they do not appear to interact significantly. This conclusion was 
established recently by Sarpkaya (1983) and Sarpkaya &, Daly (1987) who found that 
any combination of the instabilities might occur. A simple calculation for the 
maximum growth rate obtained in this study revealed that the axisymmetric mode 
has an e-folding time very close to that of the Crow instability. Figures 9 and 10 lend 
support to such a conjecture. 

Figure 11 is another photograph which has been reproduced from the work of 
Bisgood (1980). Sarpkaya’s findings can be supported by this picture which shows 
Crow’s classical ‘sinuosities ’ mode without any sign of the axisymmetric wave form. 
Until additional research is carried out, further comments on the nature of the 
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FIGURE 12. Spatial distribution of the amplitude of various eigenfunction components of a n  
axisymmetric (n = 0) perturbation : -, radial velocity ; ---, azimuthal velocity ; ----, axial 
velocity. Here, a = 0.4, q = 1.0, and Re = 400. 

interaction between these two distinct forms of instabilities are speculative and 
therefore unjustified. It may be presumptuous to state that a Batchelor vortex is a 
good approximation in studies of aircraft trailing line vortex stability because of 
questions concerning laminar and turbulent effects. However, the similarity between 
contrail observations and the present predictions is relevant. Crow & Champaign 
(1971) found that local large-scale motions in axisymmetric jets could be traced back 
to linearly unstable modes regardless of whether the jet was laminar or turbulent. A 
similar conclusion was drawn for other forms of free shear layers by several other 
researchers (see Ho & Huerre 1984). Apparently, the present linear calculations 
which seem to capture (at  least qualitatively) some of the local large-scale phenomena 
point to the possibility of similar conjectures for the case of a trailing line vortex. 

The core radius where the azimuthal mean velocity reaches its maximum is a t  
approximately r = 1.1. In  order to substantiate the fact that the axisymmetric wave 
is occurring and that it spreads beyond the core of the vortex, one has to look at  the 
perturbation eigenfunctions. Figure 12 represents the eigenfunction amplitudes of 
the perturbation components near the critical values. The phase angle plots have 
been omitted for the sake of space. The eigenfunction amplitudes have been 
normalised by the maximum amplitude of the azimuthal eigenfunction throughout 
this study. Figure 12 shows clearly that most of the perturbation energy in the radial 
and azimuthal directions is spread over a wide distance and is mostly outside of the 
core. This figure also indicates that  the axial perturbation is the dominant 
component with the maximum amplitude occurring on the centreline. But even in 
this case a significant portion of thc energy lies beyond the core radius. Overall, there 
is hardly anything happening beyond r = 10. 

The variations of the w with the axial wavenumber, a, for the asymmetric mode 
n = 1 are plotted in figure 13 with q = 0.4 and Re = 10000. This instability has 
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FIGURE 13. Variation of the frequency of asymmetric (n = + 1) disturbance with wavenumber 
for q = 0.4, Re = lo4. Solid line: w,, broken line: 0,. 

N 0 

44 0.323455 155+ i0.00047067206 
48 0.323455 110+ iO.000 470691 49 
52 0.323455 122+i0.00047070003 
56 0.323455 121 + i0.000470697 60 
60 0.323455 121 +iO.O0047069769 
64 0.323455 122+i0.00047069785 
66 0.323455 121 +iO.O0047069786 

TABLE 3. The convergence behaviour of asymmetric (n = 1) viscous mode with the number of 
Chebyshev polynomials, N .  Here, u = 0.3, Re = 2000, and q = 0.4 

growth rates which are comparable with the axisymmetric wave but it is unstable 
over a smaller range of a. However, like the n = 0 case, i t  is basically a long-wave 
instability. The maximum growth rate occurs a t  a x 0.34. The nearly linear 
variation of w, with a indicates that the axial phase speed of the wave is slightly 
greater than unity. Like the axisymmetric case, the wave is travelling nominally 
with the uniform outer mean flow, although it is a bit closer to the core of vortex in 
this case. The convergence behaviour of the asymmetric viscous mode at  Re = 2000 
is presented in table 3. The fast convergence associated with the spectral method is 
also evident in this table. 

This form of instability has been observed experimentally both in wind tunnel 
measurements and contrail photos. The measurements of Singh & Uberoi (1976) and 
Strange & Harvey (1983) support the existence of an asymmetric disturbance which 
has an axial wavelength on the order of the core radius. Furthermore, the 
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FIGURE 15. Influence of Reynolds number on the real part of the frequency of 
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photograph of condensation trails behind a wide-bodied jet shown in Strange & 
Harvey (1983) (their figure 1 )  clearly displays the existence of helical disturbances 
which coexist with the Crow instability. 

The viscous nature of the n = 1 mode is shown in figures 14 and 15. The variation 
of growth rate wi with axial wavenumber, a, shows similar behaviour to that of the 
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FIGURE 16. Variation of the growth rate of asymmetric (n = + 1)  disturbances with 
swirl parameter, with a = 0.3. 

n = 0 disturbance. However, in this case the instability occurs a t  lower Reynolds 
numbers. Also the maximum growth rate which occurs a t  Re z 60 is an order of 
magnitude greater than the wimax for the n = 0 mode. But the most interesting 
phenomenon is the behaviour of these two instabilities a t  high Reynolds numbers. 
While the asymmetric mode is the stronger of the two instabilities at low Reynolds 
numbers, as Re increases above 10000, the axisymmetric disturbance becomes the 
mode with the higher growth rate, This may be why, in most of the contrails behind 
large commercial jets (which occur a t  high Reynolds numbers), the axisymmetric 
mode is the dominant and persistent form, while in wind tunnel tests, which are 
conducted a t  much lower Reynolds numbers, both modes are present equally. Figure 
16 shows the variation of the growth rate of the n = 1 mode with the swirl parameter, 
q, for 01 = 0.3. Here, unlike the axisymmetric case, as the Reynolds number increases, 
the range of q where the instability exists shrinks while the position of maximum 
growth rate remains fairly stationary. However, similar to the n = 0 mode the higher 
end of q for all three curves asymptotes to the same value, in this case q x 0.83. 

The amplitudes of the disturbance eigenfunctions are presented in figure 17, which 
shows that the disturbances having (nl = 1 are the only ones with non-zero radial and 
azimuthal velocity on the centreline. Although the peaks occur on the centreline. a 
considerable amount of the perturbation’s energy is just outside of the core. Figure 
17 also shows the variation of the perturbation amplitude in the axial direction wit,h 
radial distance. The peak is positioned just inside of the core with a significant part 
of the perturbation immediately adjacent to the outer part of the core. The overall 
observation of the eigenfunctions indicates that this instability is narrower in its 
radial extent than that of the n = 0 disturbance. Although the eigenfunctions were 
obtained at  low Reynolds number, i t  was found that increases in Re did not alter the 
shape of the eigenfunctions significantly. Similar behaviour was observed for the 
n = 0 mode. 
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FIGURE 17. Spatial distribution of the amplitude of various eigenfunction components of an 
asymmetric (n = + 1 )  perturbation : -, radial velocity; ---, azimuthal velocity; , axial 
velocity. Here, a = 0.34, q = 0.4 and Re = 50. 

Extensive testing of the n = + 2  case and, to a lesser extent, n = +3,  failed to 
reveal any type of instability - inviscid or viscous. It was found that as the Reynolds 
number was increased, the flow appeared to approach marginal stability for both 
n = 2 and 3. Hence, to the extent of these tests, the flow was determined to be 
unstable only to those perturbations with azimuthal wavenumbers of n = 0 and 1 .  

Interestingly, unlike inviscid modes, no higher unstable modes were found for 
either the axisymmetric or asymmetric form of instability. This was tested 
extensively by going to successively higher values of N (number of Chebyshev 
polynomials) than the number needed to obtain convergence. This point has to be 
explored further. However, since the viscous instabilities occur a t  finite Reynolds 
numbers and low azimuthal wavenumbers, a different type of asymptotic expansion 
is required than that employed for high-wavenumber inviscid modes by previous 
investigators. Such work is currently in progress and will be reported elsewhere. 

5.  Conclusions 
A numerical viscous stability analysis of a trailing line (Batchelor) vortex has been 

presented. Employing a staggered Chebyshev spectral collocation technique, very 
accurate results were obtained. The inviscid results of Lessen et al. (1974) and Duck 
& Foster (1980) were confirmed, but it was shown that the higher inviscid modes 
persist to much lower Reynolds numbers. 

The destabilizing nature of viscous forces was revealed by the discovery of two 
viscous modes of instability. This was the first time that such modes have been 
shown to exist. These unstable modes consist of an axisymmetric disturbance, n = 0, 
and an asymmetric disturbance, n = 1. Both of these disturbances are found to be 
fairly long-wave instabilities with an axial wavelength on the order of the vortex core 
radius, These waves travel along the vortex axis with the uniform outer flow. The 
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growth rates are found to be orders of magnitude smaller than the inviscid modes. 
However, comparison with the experimental results of Sarpkaya (1983), Sarpkaya & 
Daly (1987), Singh & Uberoi (1976), Strange & Harvey (1983) and the condensation 
trail studies of Bisgood (1980) show such similarity with the viscous predictions that 
they represent a compelling argument for the existence of these modes. 

The author is indebted to Mr Dennis M. Bushnell for his constant support and 
encouragement and to Professor Robert L. Ash for his helpful comments during the 
preparation of this paper. Also the critical reviews of the referees are appreciated. 
This work was supported by NASA Langley Research Center under grant No. 
NAG-1-530. 
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